Journal of Organometallic Chemistry, 132 (1977) 351-358 © Elsevier Sequoia S A, Lausenne – Printed in The Netherlands

OXYTHALLATION AND OXYMERCURATION CARBON-13 NMR EXAMINATION OF SOME NORBORNENE DERIVATIVES

PETER F BARRON and DAVID DODDRELL

School of Science, Griffith University, Nathan, Queensland (Australia)

WILLIAM KITCHING *

Department of Chemistry, University of Queensland, St Lucia, Queensland (Australia) (Received December 10th, 1976)

Summary

Natural abundance ¹³C NMR spectra of a number of oxythallation adducts of norbornenes have been obtained and assigned by considerations of SFORD spectra, chemical shifts, comparisons of spectra at different frequencies, T_1 values and some aspects of ^{203,205}Tl—¹³C couplings The substituent induced shifts (α, β, γ effects) at various carbons have been calculated and compared with those for the analogous mercury(II) compounds ^{203,205}Tl—¹³C and ¹⁹⁹Hg—¹³C couplings have been measured, and for *vicinal* (³J) couplings, a dihedral angle dependence (of the Karplus type) is demonstrated

Introduction

Organothallium compounds are very attractive subjects for NMR examination as thallium isotopes (²⁰³ ²⁰⁵Tl) are 100% magnetically active ($I = \frac{1}{2}$) and large couplings to ¹H and ¹³C nuclei can be observed [1—8] Our interest in the magnitudes and stereodependencies of ¹³C—metal couplings [9,10] encouraged examination of alkylthallium compounds (RTIX₂) but a suitable variety of uncomplicated types is not available \approx Fortunately, oxythallation of norbornenes generally leads to isolable adducts [7,12,13] (with *exo* thallium) [5,12] and although ¹H NMR data for some have been reported [5,7], there is essentially no information available on ¹³C NMR parameters of cycloalkylthallium derivatives [8] In this report, we wish to present the salient features of the ¹³C spectra of a number of norbornylthallium compounds, and comparisons with the analogous (isoelectronic) mercury(II) derivatives.

(constnued on p 355)

^{*} See ref 11 for the report of CH₃Tl(OAc)₂

TABLE 1 CHEMICAL SIIIF	TS, 203,205TI-	-1 ³ C AND ¹⁹	⁹ 11g- ¹³ C COU	PLANG CONSTA	STN1				
Compound	Solvent	c(1) °	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)	Other
100 1 5 1 5 1 10 10 10 10 10 10 10 10 10 10 10 10 1	c D C B 3	40 6 (322 3)	76 G (5701, 5754)	78 9 (683 b)	42 8 (29 3)	23 6 (80 6)	29 5 (1303 7)	36 8 (31 8)	22 7 (CH3), 179 2 (C=O)
2 (11) ⁰ (11) ⁰	cDCl ₃	46 7 (239 3) 6764)	72 0 (5711,	75 2 (427 3)	482 ⁶ (171)	1354 (1197)	146 G (1069)	47 2 ^e (~ 0)	23 & (CH ₃), 178 8 (C=O)
Control of the second s	cDCl3	40 1 (51 8)	56 3 (1747)	80 2 (142 9)	42 6 (n o) ^d	237 (no)	30 0 (264 9)	364 (n 0)	21 8 (CII ₃), 177,0, 170 0 (C=O) 23 3
5 3 3 CAC	DMSO	40 8 (57 0)	61 7 (1864)	80 0 (147 0)	43,3 (10)	246 (n o) ^d	30 9 (266)	36 9 (12)	22 4 (CH ₃), C=0 (folded)
5 2 HIGOAC	cDCl3	45 5 (40 3)	62 2 (1736)	773 (96,4)	48 3 ^c (11 0,)	133 3 (17 1)	1 1 6 (211 2)	481 ⁽	23 5, 21 6 (CH3). 170 6, 177 2 (C=O)

24,4 (CH ₃), 177 6 (C=O)	22.8 (CII ₃), 177 (C=O)	22.2 (CH ₃), 176 7, 181 7 (C=O)	181 2 (C=0)	والمحافظ والمحافظ والمحاوية والمحافظ
41 5	39 1	368	37 3	
(9)	(131 8)	(366)	(nr)	
33 1	85 5	861	870	
(276)	(G1 0)	(no)	(no)	
308 (no)	67 7 (6592, 6656)	52 7 (1798)	56 6 (1938)	1
38 3	42 G	42 2	43 0	-
(93)	(219 7)	(39 1)	(36 6)	
38 8	37 3	40 4	40 6	ومعرج فيعبده ومقاصية
(43)	(1289)	(437)	(440)	
48 7	47 5	47 2	47 5	
(1660)	(70 B)	(no)	(nr)	
43 1	39 4	39 1	39 5	4
(41)	(75 7)	(171)	(nr) ^d	
CDCl ₃	Pyridine	Pyridine	Pyrıdlac	
(X1) b	(04c), (0	Aconq	CIH9 5 4	

^d Chemical shifts relative to internal TMS ^b Relative to internal dioxan $\delta(TMS) = \delta(dioxanc) + 67$ 4 ppm ^c Numbers in parentheses are thallium-carbon or mercury-carbon coupling constants Only for the large one bond couplings are separate couplings to ²⁰³7] and ²⁰⁵7] resolved (7 ratio 1 0097) ^d n 0, not observed, nr, not resolved ^e Possible assignment interchange

CHEMICAL SHIFTS C	DF PARLNT CC	OMPOUNDS								
Compound	Solvent	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	c(1)	Other	
OAC						araa Malaan ye				
	cpcl ₃ ^a	35 8	40 0	776	41 9	247	27 6	356	21 3 (CII ₃), 170 2 (C=O)	
to and the second secon	Dioxan ^a	36 8	30 1	1 O£	36 8	30 1	30 1	38.7		
such and	cDCl ^{3 a}	41 1	35 0	762	47 7	1331	141 4	46.6	21 1 (CII ₃). 170 5 (C=O)	
(n) 	cDCI ₃ ^b	39 1	465	38 1	979	34 5	803	365	C=O (not recorded)	
ò ċ- o										
;		48	366	1 3	60	7	1 9	0 2		
11		40	370 163	0 0 2 6	0 D 0 1	5 3 1 5 3	5 5 4 2	90		
IV		5 0	21 7	24	14	-01		13		
۷		44	172	21	0 ()	0.2	02	15		
١٨		63	186	87	15	10	30	28		
VII		03	10	≈ ° ¶	47	33.2	46	2 G		
		0.0	10	n 1 7	4 : 2 :	18 2	5 5	101		
XI		04	10	2 5	61	22 1	61	12		

Results and discussion

Spectra were obtained for the oxythallation and oxymercuration adducts of norbornene, norbornadiene, norborn-2-ene-5-endo carboxylic acid (providing a lactone-type adduct), 2-acetoxynorbornane, 5-acetoxynorbor-2-ene and the parent lactone from the 5-endo acid [12]

Assignments were arrived at by orthodox procedures, and SFORD spectra, comparisons of 22.63 MHz and 67 89 MHz spectra, chemical shift comparisons with the parent compounds, some ¹³C T_1 values and aspects of ^{203,205}Tl-¹³C coupling [3,4] were considered In particular, the carbon bearing thallium was characterised by a large (5–6 KHz) coupling to 203,205 Tl [3], and other patterns in long range couplings quickly emerged The well-established shielding effect [14] of the acetate oxygen at γ - and *anti*-periplanar carbons is also in evidence, and provides strong evidence where appropriate, for the listed assignments Although the SFORD spectra distinguish the secondary and tertiary carbons, it was considered that the T_1 values \times should be characteristically different also, with smaller T_1 's for the secondary carbons The adduct of norbornene (i.e. 3acetoxy-2-norbornylthallium diacetate, compound I in Table 1) was examined and the tertiary carbons (C(1), C(3), C(4)) exhibited T_1 's ranging from 0 52 sec to 0 67 sec, while the secondary carbons (C(5), C(6), C(7)) had T_1 's in the range 0 31 sec to 0 43 sec These values separate the secondary and tertiary carbons, in agreement with the SFORD spectra (The T_1 's for C(2), bearing thalhum were not determined, as this carbon signal consists of four lines (resolved coupling to both ^{203,205}Tl), of overall low intensity.) If any doubt exists between closely resonating carbons, this is indicated in Table 1 The chemical shifts and coupling constants are located in Table 1, and the substituent induced shifts (IS) in Table 2

There are several features of the results that warrant emphasis Regarding chemical shifts, the α -effects (Table 2) of Tl(OAc)₂, HgOAc and HgCl are large and positive, but the effect is much greater (ca a factor of two) for the $Tl(OAc)_2$ group Some discussion of the α -effects in a series of organostannanes has recently been presented [16], and the influence of metal electropositivity outlined In the present case, it is reasonable that increased nuclear charge at the metal in these thallium(III) and mercury(II) derivatives will result in a transfer of electron density from the carbon orbitals to the metal (σ -polarisation) caus- $\log \alpha$ -carbon deshielding In this connection, it seems consistent that α -effects in phenylthallium(III) derivatives [3,17] are ca. one-half of those in the norbornyl series, as polarisation of the sp^2C —Tl bond would be less favorable. Strong coordination to thallium would be expected to reduce the electronegativity of the Tl(OAc)₂ group (and also the α -effect) and in pyridine solvent (compared with CDCl₃) the α -effect is ca 5 ppm less positive. α -Effects of the thallium group may also be influenced by "ponderal effects" associated with the ligands on the metal, but the long TI-C bond may minimise such contributions β -Effects (Table 2) of both Tl(GAc)₂ and HgOAc are positive, but oxygenation (at C(3) in I–V and C(6) in VII–IX) at a β -carbon appears to have variable influences depending on the endo or exo nature of the C-O linkage In

<

^{*} See ref 15 for the procedure employed

compounds I–V, note the greater β -effect (ca 4–5 ppm) at the tertiary C(1), compared with the effect at the *exo*-oxygenated C(3) (ca. 1–2 ppm) whereas in VII–IX, the effects at the tertiary C(4) and *endo*-oxygenated C(6) are very similar indeed (4–5 ppm) In *exo*-2-norbornylmercunc acetate itself, the β -effect is greater (8 7 ppm) at the secondary C(3) than at the bridgehead tertiary C(1) (6 3 ppm) Positive β -effects for metal groups (e g Hg, Tl, Sn, Pb, etc.) appear to be the general rule, but it is apparent that a number of effects are contributory. The γ -effects (Table 2) of TIX₂ and HgX in these systems are of particular interest in view of our recent report [18] for the Group IVB M(CH₃)₃ cases. For the saturated systems (I, III, IV–VI) positive γ -effects of ca. 2 ppm at the remote C(6) position and at C(3) in VIII and IX, are recorded. These shifts are in the same direction as those previously determined for Group IVB systems, and positive γ -effects (in the absence of "steric compression") may also be a general result for alkyl derivatives of the main group metals exhibiting acceptor properties

Aspects of ²⁰³ ²⁰⁵Tl—¹³C coupling in some phenylthallium(III) compounds have been reported [3,4], are large one-bond couplings [3,17] of ca 8-10 KHz were noted In compounds I, II and VII such couplings $({}^{1}J)$ are still large (5-7)KHz) but significantly smaller than in the phenyl series. We believe the main factors responsible are the altered s-content in the carbon-bonding orbital to thallium as well as larger promotional energies to excited states in the alkyl compounds For compound I, a solvent change from CDCl₃ to the more strongly coordinating pyridine induces a small change (~10%) in ${}^{1}J$ from 5754, 5701 Hz to 6306; 6245 Hz, presumably reflecting a minor hydridisation change at thal- $\lim [19]$. The two-bond couplings are much smaller, but still show considerable variation For example, in I, coupling to C(1) (322 3 Hz) is less than to C(3)(683.6 Hz) and the effect of *exo*-oxygenation at C(3) is thus considerable, but in line with observations for the mercury compounds (cf C(3) in IV and VI) Most intriguing is the astoundingly small two-bond coupling to C(6) in VII, VIII and IX (with endo-oxygenation) being 61 0 Hz in VII, and unresolvably small in VIII and IX This (two-bond) coupling clearly has a pronounced stereochemical dependence on the adjacent C-O bond Although the exact nature of this dependence is unclear, it may result partially from cancellation effects of dual pathway coupling. Vicinal couplings $({}^{3}J)$ were of particular interest to us, as Karplus-type dependencies have been established for analogous ¹¹⁹Sn [9] and ¹⁹⁹Hg [10] coupling and appears very probable for ²⁰⁷Pb [20] In I, the largest ^{3}J (1303 Hz) is to C(6) with a dihedral angle of $\sim 170^{\circ}$, while much smaller couplings to C(7) (31 8 Hz) and C(4) (29 3 Hz) occur If the dihedral angle was the strongly dominant factor regulating ³J, coupling to C(7) ($\theta \sim 85^{\circ}$) would be smaller than to C(4) ($\theta \sim 120^{\circ}$), as for example, in 2-norbornylmercuric acetate (VI). Similar vic-couplings to C(4) and C(7) are manifested in all compounds I–V, despite the differences in θ , and we believe the small C(7) coupling is expected, but some other factor(s) is assuming importance and depressing the coupling to C(4) The precise structural features in these norbornyloxymetallic compounds are unknown and different torsional angles (relative to VI, say)

^{*} Some discussion of coordination systems for monoalkylthallium species is given in ref 10c

could be present * Oxygenation at the adjacent C(3) in I–V, could also be responsible for some electronic changes at C(4), resulting in a reduced coupling In the lactone adducts (VII–IX) the largest *vic*-coupling is to C(3), again with the favorable (~170°) θ , whereas coupling to C(7) (in both VII, VIII) exceeds that to C(1) While it is clear that dihedral angle is a strong regulator of ³J, examination of compounds lacking complicating oxygenation would be necessary, but the lability of RTIX₂ (R = unsubstituted cycloalkyl) pose some problems for the synthesis of suitable types [11] Efforts in this direction are continuing

Nevertheless, the present data should provide a firm base for assignment of the spectra of cycloalkyl-mercury and -thallium systems

Experimental

(a) Compounds I—IX listed in Table 1 and 2 are well known [12] and our samples had physical and spectroscopic properties in agreement with the indicated structures and literature values [12]

(b) ¹³C NMR spectra were recorded on Bruker spectrometers operating at either 22 625 MHz or 67 89 MHz in the FT mode. Chemical shifts are referenced to internal TMS

Acknowledgements

Australian Research Grants Committee for funding parts of this research, and for providing access to the National NMR Center, Canberra (Director Dr Alan Jones) Dr Alexander McKillop (University of East Anglia) kindly provided samples of some norborn-2-ene acids

References

- 1 K Hildenbrand and H Dreeskamp, Z Phys Chem, (Frankfurt) 69 (1970) 171
- 2 RJ Abraham, GE Hawkes and KM Smith J Chem Soc Perkin Trans II (1974) 627
- 3 W Kitching, D Praeger, C J Moore, D Doddrell and W Adcock, J Organometal Chem 70 (1974) 339, 94 (1975) 469
- 4 L Ernst, J Organometal Chem 82 (1974) 319
- 5 F A L Anet, Tetrahedron Lett (1964) 3399
- 6 A McKillop J D Hunt and E C Taylor J Organometal Chem, 24 (1970) 77, and ref therein
- 7 A McKillop, M E. Ford and E C Taylor, J Org Chem 39 (1974) 2434
- 8 ATT Hsieh CA Rogers and BO West, Aust J Chem 29 (1976) 49
- 9 D Doddrell, I Burfitt W Kitching M Bullpitt R J Mynott J L Considine H G Kuivila and R H Sarma J Amer Chem Soc, 96 (1974) 1940
- 10 W Kitching D Praeger D Doddrell, FAL Anet and J Krane, Tetrahedron Lett (1975) 759
- 11 (a) W Kitching Rev Pure Appl Chem, 19 (1969) 1 (b) H Kurasowa and R Okawara, Inorg Nucl Chem Letters, 3 (1967) 21, 93
- 12 (a) W Kitching, Organometal React 3 (1972) 319 (b) W Kitching, Organometal Chem Revs, 3 (1968) 61 (c) H Kurasowa and R Okawara, J Organometal Chem 10 (1967) 211
- 13 K C Pande and S Winstein Tetrahedron Lett (1964) 3393
- 14 E L Ehel, W F. Bailey, L.D Kopp R L Willer D M Grant R Bertrand K A Christensen, D K Walling M W Duch, E Wenkert, F M Schell and D W Cochran, J Amer Chem Soc, 97 (1975) 322 and ref therein

^{*} There is evidence that in cis hydroxymercurials O-Hg interactions occur so that the IR spectra (ν (OH) provide a means of distinguishing cis and trans isomers [21]

15 W. Adcock BD Gupta, TC Khor D Doddrell and W Kitching, J Org Chem, 41 (1976) 760

16 H G. Kurvala, J L Considine, R.H Sarma and R J Mynott, J Organometal Chem., 111 (1976) 179 17 J Y Lallemand and M Duteil, Org Magn Res, 8 (1976) 328

۰.

ς.

.....

18 W Kitching, M Marnott W Adcock and D Doddrell, J Org. Chem., 41 (1976) 1671

19 G D. Shier and R.S. Drago, J. Organometal Chem, 5 (1966) 330

~

- 20 D Doddrell, W. Kitching, M Bullpitt and W. Adcock, to be submitted to J. Organometal. Chem
- 21 T G Traylor, J Amer Chem Soc 86 (1964) 244